

Helping your child with Maths

Introduction

At Queensway School we follow a Maths mastery approach.

What is Maths Mastery?

A high level of performance for all
Keeping the class working together whilst addressing the needs for all pupils to master the curriculum and for some to gain greater depth and proficiency

A mind-set - All children can achieve with good teaching, appropriate resources, effort and a 'can-do' attitude.

The manner in which the curriculum is designed, focusing on fewer topics in depth, repetition and application. All pupils have access to the ideas and concepts

Deep and sustainable learning - for all Depth is the key to avoiding the need to repeat teaching. It doesn't feel like we're starting again each term.

What is Mastery of Mathematics?

The ability to build on something that has already been sufficiently mastered ...for this stage of learning - Mastery is a continuum

This Parent Handbook will give you practical information about how to support your child in Maths at home.

The maths work your child is doing at school may look very different to the kind of 'sums' you remember. This is because children are encouraged to work mentally, where possible, using personal jottings to help support their thinking. Even when children are taught more formal written methods (from late year 2 onwards), they are only encouraged to use these methods for calculations they cannot solve in their heads.

Discussing the efficiency and suitability of different strategies is an important part of maths lessons.

- Find out which number facts your child is learning at school (addition facts to 10 , times tables to 12 , doubles etc). Try to practise for a few minutes each day using a range of vocabulary.
- Have a 'fact of the day'. Pin this fact up around the house. Practise reading it in a quiet, loud, squeaky voice. Ask your child over the day if they can recall the fact.
- Play 'ping pong' to practise complements with your child. You say a number. They reply with how much more is needed to make 10. You can also play this game with numbers totaling 20, 100 or 1000. Encourage your child to answer quickly, without counting or using fingers.
- Throw 2 dice. Ask your child to find the total of the numbers (+), the difference between them (-) or the product (x). Can they do this without counting?
- Use a set of playing cards (no pictures). Turn over two cards and ask your child to add or multiply the numbers. If they answer correctly, they keep the cards. How many cards can they collect in two minutes?
- Play Bingo. Each player chooses five answers (e.g. numbers to 10 to practice simple addition, multiples of 5 to practise the five times tables). Ask a question and if a player has the answer, they can cross off all their answers
(e.g. $10=\square+\square$). Try with multiplication or subtraction.
- Give your child a number fact (e.g. $5+3=8,8-3=5,8-5=3,50+30=80$, $500+300=800,5+4=9,15+3=18$). Add to the list over the next few days. Try starting with a \times fact as well.

COUNTING IDEAS

- Practise chanting the number names.
- Encourage your child to join in with you. When they are confident, try starting from different numbers - 4, 5, $6 \ldots$
- Sing number rhymes together - there are lots of commercial tapes and CD's available.
- Give your child the opportunity to count a range of interesting objects (coins, pasta shapes, buttons etc.). Encourage them to touch and move each object as they count.
- Count things you cannot touch or see (more difficult!!). Try lights on the ceiling, window panes, jumps, claps or oranges in a bag.
- Play games that involve counting (e.g.snakes and ladders, dice games, games that involve collecting objects).
- Look for numerals in the environment. You can spot numerals at home, in the street or when out shopping.
- Cut out numerals from newspapers, magazines or birthday cards. Then help your child to put the numbers in orders.
- Make mistakes whenchanting, counting or ordering numbers. Can your child spot what you have done wrong? Choose a number of the week e.g. 5. Practise counting to 5 and on from 5. Count out groups of 5 objects (5 dolls, 5 bricks, 5 pens). See how many places you can spot the numeral 5 .

REAL LIFE PROBLEMS

- Go shopping with your child to buy two or three items. Ask them to work out the total amount spent and how much change you will get.
- Buy some items with a percentage extra free. Help your child to calculate how much of the product is free.
- Plan an outing during the holidays. Ask your child to think about what time you will need to set off and how much money you will need to take.
- Use a TV guide. Ask your child to work out the length of their favourite programmes. Can they calculate how long they spend watching TV each day/ each week?
- Use a bus or train timetable. Ask your child to work out how long a journey between two places should take? Go on the journey. Do you arrive earlier or later than expected? How much earlier/later?
- Help your child to scale a recipe up or down to feed the right amount of people.
- Work together to plan a party or meal on a budget.

When faced with a calculation problem,
encourage your child to ask...
Can I do this in my head?
Could I do this in my head using drawings or jottings to help me?
Do I need to use a written method?
Also help your child to estimate and then check the answer.
Encourage them to ask...
Is the answer sensible?
Encourage them to use the inverse operation to check.

Addition

Children are taught to understand addition as combining two sets and counting on.

$2+3=$ At a party, I eat 2 cakes and my friend eats 3. How many cakes do we eat altogether?	Children could draw a picture to help them work out the answer
$7+4=$ 7 people are on the bus. 4 more get on at the next stop. How many people are on the bus now?	Children could use dots or tally marks to represent objects (quicker than drawing a picture)
$47+25=$ My sunflower is 47 cm tall. It grows another 25 cm . How tall is it now?	Draw an empty number line helps children to record the steps they have taken in a calculation (start on $47,+20$, then +5). This is much more efficient than counting on in ones.

Addition

487+546 = There are 487 boys and 546 girls in a school. How many children are there altogether? $\begin{array}{r} 546 \\ +487 \\ 13 \\ 120 \\ \underline{900} \\ \underline{1033} \\ \hline \end{array}$	Children will be taught written methods for those calculations they cannot do 'in their heads'. Expanded methods build on mental methods and make the value of the digits clear to children. The language used is very important. $(6+7,40+80,500+400$, then $900+120+13$ - add this mentally NOT in columns).
$12,786+2,568=$ 12,786 people visited the museum last year. The numbers increased by 2,568 this year. How many people altogether visited this year?	When children are confident using the expanded method, this can be 'squashed' into the traditional compact method. $\begin{array}{r} 12786 \\ +2568 \\ \hline 15354 \\ \hline 111 \end{array}$

SUBTRACTION

Children are taught to understand subtraction as taking away (counting back) and finding the difference (counting up)
5-2=
I had five balloons. Two burst. How
many did I have left?
Drawing a picture helps children to
visualise the problem.
A teddy bear costs £5 and a doll costs
£2. How much more does the bear
cost?

SUBTRACTION

$834-378=$ The library owns 834 books. 378 are on loan. How many are on the shelves?	Children could count up (from the smallest number to the biggest) using an empty number line. It is easiest to count up to a multiple of 10 or 100 (a friendly number). The steps can also be recorded vertically. This method works really well with any number s, including decimals! 22 (400) 400 (800) $\underline{34}$ (834) 456
64-58 =	Children can count on from the smallest number to the largest. This is called 'Finding the Difference' and is often a very efficient method if the numbers are close together.

MULTIPLICATION

Children are taught to understand multiplication as repeated addition and scaling. It can also describe an array.

$2 \times 5=$ Each child has two eyes. How many eyes do five children have?	Again a picture can be useful.
5×2=	Dots or tally charts are often drawn in groups. This shows 2 groups of 5 .
4×3= A chew costs 4 p. How much do 3 chews cost?	Drawing an array (3 rows of 4 or 3 columns of 4) gives children an image of the answer. It also helps develop the understanding that 4×3 is the same as 3×4.

MULTIPLICATION

$6 \times 4=$ There are 4 cats. Each cat has 6 kittens. How many kittens are there altogether?	Children could count on in equal steps, recording each jump on an empty number line. This shows 4 jumps of 6 .
$13 \times 7=$ There are 13 biscuits in a packet. How many biscuits in 7 packets?	When numbers get bigger, it is inefficient to do lots of small jumps. Split 13 into parts (10 and 3). This gives you two jumps (10×7 and 3×7).
$6 \times 124=$ 124 books were sold. Each book cost £6. How much money was taken?	This is called the grid method. 124 is split into parts (100, 20 and 4) and each of these is multiplied by 6. The three answers are then added together.
$72 \times 34=$ A cat is 72 cm long. A tiger is 34 times longer. How long is the tiger?	This method also works for 'long multiplication'. Again split up the numbers and multiply each part. Add across the rows, then add those two answers together.

DIVISION

Children are taught to understand division as sharing and grouping.

| $6 \div \mathbf{2 =}$ |
| :--- | :--- |
| 6 Easter eggs are shared between |
| 2 children. How many eggs do they |
| get each? | Drawing often gives children a way into solving the problem.

DIVISION

$84 \div 6=$
I need 6 drawing pins to put up a picture. How many pictures can I put up with 84 pins?

It would take a long time to jump in sixes to 84 so children can jump on in bigger 'chunks'. A jump of 10 groups of 6 takes you to 60 . Then you need another 4 groups of 6 to reach 84 . Altogether, that is 14 sixes.

$192 \div 8=$
8 pencils fit in each packet. If you have 192 pencils, how many packets can be filled?
\square
$184 \div 7=$
I need 184 chairs for a concert. I arrange them in rows of 7. How many rows do I need?

It is helpful to split 192 into sensible 'chunks' before dividing. As you are dividing by 8 , the 'chunks' chosen must also be multiples of 8 . Divide each 'chunk' (how many groups of 8?) and then add the answers together.

This method is known as chunking. In this example, you are taking away chunks of 7 . First subtract 140 (20 groups of 7) and you are left with 44. Then subtract 42 (6 groups of 7), to leave 2. Altogether, that is 26 sevens with a remainder of 2.

184

- 14020 groups 44
- 426 groups 2
$=26 \mathrm{r} 2$

SHAPES AND MEASURES

- Choose a shape of the week e.g. cylinder.
- Look for this shape in the environment (tins, candles etc). Ask your child to describe the shape (2 circular faces, 2 curved edges . . .)
- Play 'guess my shape'. You think of a shape. Your child asks questions to identify it but you can only answer 'yes' or 'no' (e.g. Does it have more than 4 corners? Does it have any curved sides?)
- Hunt for right angles around your home. Can your child also spot angles bigger or smaller than a right angle?
- Look for symmetrical objects. Help your child to draw or paint symmetrical pictures/patterns?
- Make a model using boxes/containers of different shapes and sizes. Ask your child to describe their model.
- Practice measuring the lengths or heights (in metres or cm). Help your child to use different rulers and tape measures correctly. Encourage them to estimate before measuring.
- Let your child help with cooking at home. Help them to measure ingredients accurately using weighing scales or measuring jugs. Talk about what each division on the scale stands for.
- Choose some food items out of the cupboard. Try to put the objects in order of weight by feel alone. Check by looking at the amounts on the packets.
- Practice telling the time with your child. Use both digital and analogue clocks. Ask your child to be a 'timekeeper' (e.g. tell me when it is half past four because then we are going swimming).
- Use a stop clock to time how long it takes to do everyday tasks (e.g. how long does it take to get dressed?).
- Encourage your child to estimate first.

Useful websites to support your child at home:
http://www.bbc.co.uk/education
http://www.coolmath-games.com/
https://www.mathplayground.com/games.htm|
http://www.bbc.co.uk/sport/football/supermovers
http://www.mathsisfun.com/
http://www.topmarks.co.uk/maths-games/hit-the-button
http://www.bbc.co.uk/bitesize/ks1/maths/
http://www.bbc.co.uk/bitesize/ks2/maths/

